Cursive Handwriting Segmentation Using Ideal Distance Approach
نویسنده
چکیده
Received Jan 11, 2017 Revised Apr 7, 2017 Accepted Jun 11, 2017 Offline cursive handwriting becomes a major challenge due to the huge amount of handwriting varieties such as slant handwriting, space between words, the size and direction of the letter, the style of writing the letter and handwriting with contour similarity on some letters. There are some steps for recursive handwriting recognition. The steps are preprocessing, morphology, segmentation, features of letter extraction and recognition. Segmentation is a crucial process in handwriting recognition since the success of segmentation step will determine the success level of recognition. This paper proposes a segmentation algorithm that segment recursive handwriting into letters. These letters will form words using a method that determine the intersection cutting point of image recursive handwriting with an ideal image distance. The ideal distance of recursive handwriting image is an ideal distance segmentation point in order to avoid the cutting of other letter’s section. The width and height of images are used to determine the accurate segmentation point. There were 999 recursive handwriting input images taken from 25 researchers used for this study. The images used are the images obtained from preprocessing step. Those are the images with slope correction. This study used Support Vector Machine (SVM) to recognize recursive handwriting. The experiments show the proposed segmentation algorithm able to segment the image precisely and have 97% success recognizing the recursive handwriting.
منابع مشابه
Fusion of Segmentation Strategies for Off-Line Cursive Handwriting Recognition
Cursive handwriting recognition is a challenging task for many real-world applications such as document authentication, form processing, postal address recognition, reading machines for the blind, bank check recognition, and interpretation of historical documents. Therefore, in the last few decades, researchers have put an enormous effort into developing various techniques for handwriting recog...
متن کاملA Learning-based Approach to Cursive Handwriting Synthesis ?
This paper proposes a learning-based approach to synthesize cursive handwriting of the user’s personal handwriting style, by combining shape models and physical models together. In the training process, some sample paragraphs written by the user are collected and these cursive handwriting samples are segmented into individual characters by using a two-level writer-independent segmentation algor...
متن کاملOff-line Cursive Handwritten Word Segmentation, A new approach
The segmentation of off-line cursive handwritten word is an important step in cursive handwriting recognition. In this paper a new, simple yet effective approach is proposed. Proposed technique is based on the analysis of the ligatures of the characters in the cursive word. The only preprocessing is to skeleton the word to allow variations in pen thickness and tilt in writing. There is no const...
متن کاملSegmentation of Persian Cursive Words Using Basic Shapes
Segmentation is a process of dividing cursive words into smaller parts in order to decrease complexity and increase accuracy of handwriting recognition process. However it is a complicated and timeconsuming task. In this paper, we introduce the concepts of basic shapes and explore its application for segmentation of Persian words. Considering a set of pre-defined shapes include line and open or...
متن کاملEnhancing Neural Confidence-based Segmentation for Cursive Handwriting Recognition
This paper proposes some directions for enhancing a neural network-based technique for automatically segmenting cursive handwriting. The technique fuses confidence values obtained from left and center character recognition outputs in addition to a Segmentation Point Validation output. Specifically, this paper describes the use of a recently proposed feature extraction technique (Modified Direct...
متن کامل